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Scheme 1.
N-Alkyl substituted 4-piperidones readily undergo oxidation in high yield upon reaction with mercuric
acetate. Application of the oxidation to the synthesis of the skeletal framework of several alkaloids is
described.

� 2008 Elsevier Ltd. All rights reserved.
2,3-Dihydro-4-pyridones (2) are important synthetic intermedi-
ates, particularly for the preparation of alkaloids and medicinal
agents.1 The presence of the vinylogous amide found in six-mem-
bered azaheterocycles facilitates the introduction of other substit-
uents onto the piperidine ring in a regio- and stereocontrolled
manner.2 Due to A1,3 strain,3 the C2 group of the dihydropyridone
2 is forced into a pseudoaxial position providing a conformational
bias in the molecule. This effect allows for control of the stereo-
selectivity of 1,2- and 1,4-addition to the enone moiety, C3 enolate
alkylation, Luche reduction of the C4 carbonyl and intramolecular
radical cyclization.4,5 The C5 position can also be halogenated using
NBS and a subsequent palladium-mediated coupling provides
various 5-substituted derivatives (Scheme 1).6 A widely used
ll rights reserved.
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method for the synthesis of the dihydropyridone system involves
the reaction of carbon nucleophiles with various 1-acylpyridinium
salts (1).1,7 Because of the abundance of piperidine-containing
natural products,8 this method has been extensively utilized by Co-
mins et al. for the asymmetric synthesis of many quinolizidine,
indolizidine and perhydroquinoline alkaloids.4 Another approach
that has been occasionally employed for the preparation of 2,3-
dihydro-4-pyridones consists of an oxidation of the related 4-pip-
eridone system (i.e., 3?2).9 4-Piperidones are readily available
from the Dieckmann cyclization of aminodicarboxylate esters or
by the condensation of carbonyl compounds with ammonia via a
Mannich reaction.10,11 One general problem associated with this
method is that the oxidation only works well when an electron-
withdrawing group is attached to the nitrogen atom. In addition,
the reaction frequently leads to a mixture of 2,3-dihydro-4-pyri-
done isomers. Oxidation of these N-acylated 4-piperidones is
typically effected by using PhSeCl/H2O2, Saegusa or IBX methods
(carbonyl directed dehydrative protocols).9 In contrast, the few re-
ported examples of oxidation of N-alkyl substituted 4-piperidones
almost always involve the use of a peracid induced Polonovski
reaction12 and generally results in meager yields of the corre-
sponding vinylogous amide. Thus, a high yielding oxidation meth-
od for the preparation of substituted 2,3-dihydro-4-pyridones from
N-alkyl substituted 4-piperidones would be an advance in the area
of heterocyclic synthesis.

As part of an ongoing synthetic program aimed at the develop-
ment of new approaches to functionalized piperidine ring systems,
we have explored the use of the tandem conjugate addition–dipo-
lar cycloaddition cascade of keto oximes 8 with 2,3-bis(phenylsul-
fonyl)-1,3-butadiene (7) as a route to various marine alkaloids.13

This reaction cascade is easy to perform and affords azaoxabicyclic
cycloadducts 9 in good to excellent yields with essentially
complete stereocontrol (Scheme 2).14 Raney-Ni reduction of
cycloadduct 9 triggers a sequential nitrogen–oxygen bond cleavage
followed by desulfonylation to furnish a 2,2-disubstituted 4-pip-
eridone of type 10. With an easy entry into 4-piperidones such
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as 10, our intention was to further oxidize the system in order to
produce the corresponding 2,3-dihydro-4-pyridone 11. This would
be followed by reaction with several cuprate reagents to afford
2,2,6-trisubstituted 4-piperidones 12 which are useful intermedi-
ates for alkaloid synthesis.13

The ubiquity and utility of the dihydropyridone system coupled
with the difficulties that are associated with the oxidation of
N-alkyl substituted 4-piperidones suggested a more detailed inves-
tigation. The earlier success of the mercuric acetate oxidation of
piperidines by Leonard et al.15 led us to test the utility of this
oxidizing agent with various 4-piperidones. Scheme 3 outlines
several 2,3-dihydro-4-pyridones that were prepared in good yield
from the corresponding N-alkyl 4-piperidone precursor using
mercuric acetate conditions.16 It should be noted that only the
more substituted dihydropyridone (i.e., 13 and 15) was obtained
from the oxidation, thereby indicating a distinct preference for
the formation of the thermodynamically most stable product.

We then conducted a brief exploration of the synthetic utility of
the reaction to create the skeletal framework of various alkaloids.
Reaction of the commercially available bromide 17 with 1,4-di-
oxa-8-azaspiro[4.5]decane in the presence of K2CO3 followed by
a subsequent hydrolysis of the ketal provided 4-piperidone 18 in
87% yield. Mercuric acetate oxidation of 18 gave 19 in 88% yield.
Treatment of 19 with 10% H2SO4 at 90 �C induced initial enamide
protonation and this was followed by a Pictet–Spengler cyclization.
A subsequent mercuric acetate oxidation of the cyclized 4-piperi-
done intermediate afforded dihydropyridone 20 in 79% yield for
the two-step sequence (Scheme 4). Consistent with previous
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observations (i.e., 13 and 15), only the more heavily substituted
enamide 20 was formed in the final oxidation step.

We also investigated a similar approach to the core skeleton of
the yohimbenone framework. Reaction of 3-(2-bromoethyl)-1H-in-
dole (21) with 1,4-dioxa-8-azaspiro[4.5]decane followed by ketal
hydrolysis furnished 4-piperidone 22 in 74% yield. Treatment of
22 with mercuric acetate provided a 90% yield of the corresponding
dihydropyridone 23. This heterocycle represents a useful inter-
mediate for alkaloid synthesis, as is shown by its sequential acid
cyclization/mercuric acetate oxidation to give tetrahydroindo-
lo[2,3-a]quinolizinone 24 in 76% yield for the two-step sequence
(Scheme 5).

In summary, we have demonstrated that N-alkyl substituted 4-
piperidones readily undergo oxidation in high yield upon reaction
with mercuric acetate. The resulting 2,3-dihydro-4-pyridones rep-
resent useful synthetic intermediates for a host of reactions. Stud-
ies concerning the application of the mercuric acetate oxidation to
various 4-piperidones prepared by a conjugate addition/dipolar
cycloaddition cascade of oximes with 2,3-bis(phenylsulfonyl)-1,3-
butadiene are in progress and will be reported in due course.
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